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Synchronization Analysis of Autonomous
Microwave Circuits Using New
Global-Stability Analysis Tools
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Abstract—A new spectral-balance technique for the global- it is taken into account that the HB independent variables are
stability analysis of autonomous circuits is presented in this related to the probe value through the HB equations. Thus,
paper. This technique relies on the introduction of measuring with the aid of an existing HB approach, it is possible to

probes into the circuit and it allows a simple determination of id bsolute d d £ 1h b turbati
both bifurcation diagrams and bifurcation loci as a function of consider an absolute dependence of the probe nonperturbation

any suitable parameter. Through the proposed algorithms, this €quation on the probe variables, such as amplitude, phase,
kind of analysis can be easily added to any existing software, or frequency. One of these variables can always be fixed
since it is performed externally to the harmonic-balance (HB) in advance according to the regime to be simulated, so the

calculation. Due to its local nature, it also allows an easy selection resulting system will be of order two, which greatly reduces
of the bifurcation parameters, which spreads the simulation . .
the complexity of the calculation.

possibilities. Both periodic and quasi-periodic regime simulations
are possible, and bifurcations are detected in both operating ~When one or more parameters are considered, bifurcation
modes. The synchronization phenomenon in injected oscillators phenomena such as synchronization, hysteresis, or frequency
a”dd,f“t?quer}c%diViderSt_iS at')SO 3na1l_yhzed.in ‘?ett.a” ftor ﬁ“,accurate division must be accurately detected for a good prediction
rediction of the operating bands. The simulation techniques are - : - :

i?lustrated by mea[r)ls of ti?eir application to a cubic nonl?nearity of the circuit be:hawor. The solution paths are consituted by
oscillator. They are then used for the stability analysis of a the set of solutions of the HB equations that result from the
monolithic microwave integrated circuit (MMIC) divider by two  variation of a parameter. Here, they are obtained by intro-

operating in the millimetric range. A very good agreement has ducing the parameter into the probe equations and applying

been obtained with the experimental results. a continuation technique [3] to these equations instead of
_Index Terms—Bifurcation, continuation method, frequency di- the HB system. This makes it possible to implement this
vider, stability, synchronization. analysis separately from the HB calculation. The method is

applicable both for periodic and quasi-periodic solution paths.
This allows a more accurate analysis of the transformations

from one regime to another, which often show hysteresis
HE HARMONIC-BALANCE (HB) method allows an phenomena. Although a probe formalism for bifurcations

efficient analysis of forced nonlinear regimes. HOWeVef, 4 peen established before [2], this was based on the root

in the case of autongmous or synchrpmzeq regimes, it m%ﬁtlculation of the HB-system characteristic determinant [2],
be complemented with special techniques in order to av . using the probe for modeling the injection generator

its convergefncie.tovxr/ward trivial ;olutionz [11 [ZL' Qne sz th substitution probe) [2]. Many technical aspects of the method
moit power_ud IS tde measuring probes tec hmque [2]. ange when measuring (nonperturbing) probes are used.
probe Is an independent source operating at the autonomgﬁua"y, considering the absolute dependence of the probe

or synchronized fundamental with a filter, eliminating 3 its own variables, important bifurcation phenomena can be

influence at all the other frequencies. The probe must a_Ig sily detected. These are mainly branching and turning points.

satisfy a nonperturbation condition of the steady state, whic Branching: For a given parameter value, a solution branch

is provided by a.5|m.p|e mathemghcal equatl(.)n.' By means &%\rts or ends. This is characteristic of Hopf bifurcations and
the probe, the circuit may be simulated as if it operated I

|‘requency division by two. When the branch is traced by means

a forced regime, which allows a straightforward appllcat|o(r)1f a probe, its beginning and end correspond to a zero value

.Of the HB Fechmque. I_n this paper, some mod|_f|cat|ons art the probe amplitude. This allows a simple detection of the
introduced in this technique to make it more easily appllcabge

L : fanching points.
to any existing HB software. In the new resolution method, Turning Point: The turning points at which the solution
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Bifurcation loci (on a two-parameter plane) may thus be ob-
tained by imposing simple conditions to the measuring probe
introduced into the circuit. This avoids the more demanding
root calculation of the HB characteristic determinant [2], [4].

In the engineering literature, the terphase-lockeds of-
ten applied to any periodic state of an injected oscillator.
However, from an autonomous quasi-periodic regime with
two nonrationally related fundamentals, there are two different
phenomena leading to a periodic behavior as a parametefigs1. HB partitioning.
modified: the synchronization, when the two fundamentals
become rationally related, and the inverse Hopf bifurcation,
or asynchronous extinction of the autonomous frequency.
The former only takes place for a relatively narrow band, ) ]
around the free-running oscillation frequency, or one of its Nonlincar
harmonic components, and it is associated to turning points of Circuit D vp
periodic bifurcation diagrams. From a geometrical viewpoint,
at the turning points (also called saddle-node bifurcations) of
a stable periodic regime, a stable node and a saddle of the @
Poincare mapping collide in a single equilibrium point (saddle

Linear Circuit LY = GO RE-)

I
dt

R 0 o=o0
Rilter Z(w) = P

0 ®= e,

node) and disappear for further parameter variation [5], [6]. ) 0 o-=o,
. . . . Filter Y(o) =

Generally speaking, the system solution should then jump to Nonlinear © 0o

another stable solution, but if no one is encountered, stable Circuit

Ip

and unstable manifolds will give rise to a limit cycle of the
mapping [5], [6], i.e., to a quasi-periodic regime. This may be
understood as a loss of synchronization of the initial periodic (b)

regime. Turning points may thus correspond either to juniyy. 2. Probes configuration. (a) Voltage probe. (b) Current probe.
or phase-locking phenomena. Here, some hints are provided

in order to distinguish both types of turning points from the. it h in Fig. 2. th Vsi b f d
bifurcation loci. The transformation of the quasi-periodic path%rf#' ,f as Sd own in tlgk ’ s an.’:\ ysIS ;ntiy (;,-f_p_er orm? Hgs
into a synchronized periodic response is also studied in detify IN€ forced regime, taking advantage ot the €fliciency o

For an easy understanding of the proposed techniqu' Sforced operation. For the resulting solution to be valid, the

these are going to be applied first to a cubic nonlineari tgtze[g]w;tccs:i:ljg aton(irr]lgeirtu;bspor:o%(;n?\;g(l)tg (:;Tecj:f:riy
oscillator. Then, a monolithic microwave integrated circui ' 9 yp P 9

(MMIC) frequency divider by two in the millimetric range source), this condition will be given by

will be analyzed. They will be used as examples in the analysis _ 4
of the synchronization phenomena and their behavior will be o Vi =0 fora voltage probe
compared from a bifurcation point of view. i
S = I—p =0 for a current probe (2)
P

Il. STEADY-STATE ANALYSIS where V,, and I, are, respectively, the probe voltage and

In the HB formulation, the overall circuit (see Fig. 1) iscurrent.
split into an embedding linear circuit, independent generatorsThe probe is characterized by its amplitudg, operating
g(t), and nonlinear sourcegt) controlled by the independentfrequencyw,, and phase®,. However, depending on the
variablesx(¢). The HB system is then obtained by equatingype of regime to be analyzed, one of them can always be
all the spectral components of the Fourier transformg(@f, fixed in advance [2]. Hereafter, the two probe variables to
x(t), andy(t), and can be written as [7] be determined will be called; andps. These variables will

be A, andw, for autonomous regimes and, and ¢, for
Hy(X) = [Ax]X - [Ay]Y(X) - [46]G =0 (1) synchronized regimes [2]. The total system will then be

whereX, Y, and G are vectors, respectively, containing the H,(X, p1, p2) =0 (3a)
spegtral components t‘::f(t)3 v(t), andg(t). The matrices are S(X, p1, p2) =0 (3b)
obtained from the analysis of the linear part of the circuit.
The frequency components will be given by with —N- < where H, are the spectral-balance equations &hds the
k < Ng. vector composed of the real and imaginary parts of the ratio

The application of HB is straightforward in the case of2).
forced regimes, but in case of autonomous or synchronizedThe system (3) can be solved considering a partial de-
operation there might be some problems of convergengendence of the probe and HB equations on the nonlinearity
toward trivial solutions. When a measuring probe [2] at theontrolling variablesX and the probe variables andp- [2].
autonomous or synchronized frequency is introduced into thlowever, including the probe in the generator vedirthe
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vector X corresponding to everp value, withp = (p;, p2) is especially suitable for obtaining the solution paths in au-
can be obtained through the HB approach, as stated in (fbnomous operating modes such as those corresponding to
An absolute dependence of the probe equations on the prainged oscillators or to the autonomous quasi-periodic solutions

vectorp may then be considered as follows: of injected oscillators. Actually, for obtaining these paths from
STX _g —0 4 a traditional continuation approach applied to the HB system
[X(p1; p2); p1, 2] = S(p1; p2) = 0. (4) (aside from the HB Jacobian matrix), two sets of derivatives of

The solving strategy adopted here is thus based on a two-if¢ HB functions will be needed: with respect to the parameter
process where the pure HB equation constitutes the inner Ioép@nd the autonomous frequeney,, which varies along the
In this way, a system of only two unknowns in two equationath. By applying (7), no derivatives of the HB functions with
is obtained. Although more demanding in terms of comput&#SPect tou or w, are calculated.
time, this method has the advantage of being easily applicable
to existing software since it can be implemented separatdly Stability Analysis

from the HB calculation. For determining the stability of a given solution point
Xo(p), a perturbation of the form(°+7+)t will be considered

[Il. GLOBAL-STABILITY ANALYSIS [4]. Due to its small value, the new solution point may be
expressed aX = X+ AX with the perturbation vectaAX
A. Probe-Continuation Method having frequency components given by, + w — jo. This

For obtaining the evolution of the circuit steady solutioﬂi’_erturb‘"ltlon vector must also satisfy the HB (_aquatlons, ar_1d
when one of its parameters is continuously modified, thiince there are no generators at the perturbation frequencies,

parameter should be introduced into the probe equations a7 homogeneous system (also callehracteristic systejn
will result. For solutionsAX different from zero to exist,

S.(p1, p2, 1) =0 the system determinant must be equal to zero. The steady
Si(p1, pa, ) =0 (5) solutionX, will be stable when all the determinant roots have
o < 0 and bifurcations (or qualitative stability changes) will
where the subindexes indicate real and imaginary parts. Thiis obtained for the parameter values satisfying [4]
a system of three unknowns in two equations that provides the

solution path. In general, this curve will be multivalued and det[I'(p, Xo, w)] =0
this is why a continuation method must be used. The Jacobian do £0 @)
matrix of the probe equations is introduced first: dp
98, 98, whereT is the characteristic matrix.
[Js] = dp1  Op2 (6) Equation (9) provides the general condition for local type
S as; 9IS, |’ bifurcations, i.e., involving a single point [5]. The vectH,
ap1  Ops is the steady-state solution with any number of fundamentals

Once a solutoX” (') has been determined for the parangt FETE T G TR, FEE (SR SOt O
eter valuey™, the prediction for the next point of the path P P 9 9

Xgﬂ(pgﬂ) corresponding tq.” + Az may be obtained by the frequency valuev satisfying (9). The new method is

linearizing the probe equations abaaft as follows: based on the properties of the probe amplitude or associated
9 P q ' determinant at the bifurcation points. In the Appendix, a
as

" discussion is presented about the equivalence between the
n n+1 R hdiad o
[Js] (pp P") + {@J Ap=0. ) bifurcation conditions obtained from the new method and the

eneral equation (9). Three different regimes will be consid-

A_fter a possm_le parameters exchange, the correction of the pg?éd: autonomous periodic, periodic with external excitation,
dicted value is performed by means of the Newton—-Raphsgn, , .tonomous quasi-periodic

algorithm. From (7), the infinite slope or turning points of the

solution curve as a function of the continuation parameter L
P ol A. Autonomous Periodic

will satisfy
Ap, 1) Primary Hopf Bifurcation: Start of a Free-Running Os-
- cillation: When applying (9) to a dc regime of a potentially
Ap _; [0S LN . ) :

=[Jg]7*- [—} = 0. (8) autonomous circuit, the corresponding solutions provide the

Apz I primary Hopf bifurcation points, at which RF solutions with
Ap w as fundamental frequency appear or disappear.

Thus, they will correspond to a zero value of the determinantWhen introducing a probe into the circuit, the primary Hopf

of the Jacobian matrix, as given by (6). bifurcation points are given by the solutions of the probe

This continuation method is easily implementable on thebsolute system for a zero value of the probe amplitude, as this
computer since no modifications of the HB formulation aris the limit condition for the existence of an autonomous solu-
needed. Actually, the selection of a new parameter oniipn. Actually, in an autonomous solution path, a probe value
involves modifications in the few subroutines dealing witmay be assigned to each steady oscillation, while as soon as
the derivatives calculation of the functid®. This method this autonomous solution is extinguished, the nonperturbation
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condition (4) cannot be satisfied for any probe amplitude ar a similar fashion to the autonomous case. The practical
frequency. Due to the continuity of the probe equations, tmesolution is carried out from the following system:
probe amplitude will tend to a zero value as the inverse Hopf

bifurcation point is approached. Sr(¢p, 1) =0
The practical resolution for primary Hopf bifurcation points Si(¢p, &) =0
may be carried out by imposing the probe a threshold ampli- A, =¢
tude valuee. The equation system to be solved will be Win
wp =—. (13)
2
S;(wp, 1) =0 For two elements in the vectar, the I-type bifurcation locus
Si(wp, @) =0 is obtained.
A — 2) Secondary Hopf Bifurcation: Appearance of an Au-
p =€ (10)

tonomous FrequencyThe secondary Hopf bifurcations are

solutions of (9) forw = aw;, With o € R and nonrational. At
where the probe frequency, is of course equal to the these points, a quasi-periodic solution of fundamentalsand
unknown autonomous frequeney,. The vectory may be ., [9] will appear or disappear as the parameter is modified.
composed of one or two parameters. In case of two elemenmise |atter case will correspond to an inverse Hopf bifurcation.
(p1, p2), @ bifurcation locus will be obtained on the plan@y means of a probe, the Hopf bifurcation points may be
(p11, p2). Possible parameters are bias voltages or tunig@tained by setting the probe amplitude to a threshold value

elements. The application of a Nyquist analysis [4] providescaand solving for the parameter value and the autonomous
good initial estimate of,, for a given parameter value and (10¥requencyw,

is easily solved through the Newton—Raphson method. This

must be complemented with a continuation technique when a Sy (wp, 1) =0
locus is to be obtained. Si(wp, &) =0
2) Turning Points: When tracing an oscillator solution path A —¢ (14)
=

as a function of a tuning parameter, turning points giving
rise to jump or hysteresis phenomena are often encountergflere the probe frequenay, is equal tow,. Due to the

According to (8), these points will satisfy threshold amplitude value of the autonomous fundamental, the
number of spectral components for the resolution of (14) may
8s, 88, IS, oS, be greatly reduced.
det[Js] = OA dw, OA dw, =0. (11) 3) Turning Points: At turning points, the path stability

changes without any variation in the system fundamentals.
. Thus, they are solutions of (9) fay = 0. Using the probe
Due to the absolute dependence of faunction on the probe method, the probe phase and amplitude will be the variables

variables, the above determinant agrees with the Kuroka oabe solved. Taking (8) into account, turning points may be
stability function [8] for free-running oscillators. Here, the ' 9 ' gp Y

multiharmonic nature of the circuit solution is taken inté:éIICUIateOI by applying

account in the derivatives calculation (through HB). The S (A ) =0
turning points can thus be calculated by applyin (e, 0 1)
Det[Js(A4,, ¢p, )] =0. (15)
S7‘(AP7 wpv ﬁ) =0 [ ( i : )]
Si(Ay, wp, ) =0 Either a single bifurcation point or locus may be obtained

according to the dimension of.

Turning points are associated to jump and hysteresis phe-
nomena. However, as already discussed, they may also de-
wherew, = w,. Either a single bifurcation point or a locustermine the end of phase-locked behavior. When tracing the

det[‘]S(Apv Wp, ﬁ] =0

may be obtained according to the dimensiory.of loci of an injected oscillator on the traditional plane, given
by the input powerand theinput frequencythe free-running
B. Periodic Regime With External Excitation oscillation point will always belong to one of the possible

. : . turning point loci (as it is a degenerated point, obtained for
From a periodic regime of fundamental, provided by the ero input power). The synchronization phenomenon will be

external-generator, dlﬁergnt sor_ts 9f bifurcations are .pOSSIbf(raéated in greater detail in Section 11I-B.3 and the application
1) Indirect or I-Type Bifurcation: Frequency Division by .

Two: I-type bifurcations are solutions of (9) far = w;, /2. section.

At these points, a divided-by-two solution appears or disap-
pears [9]. By means of a probe, such solutions are obtained
by fixing the probe frequency,, to win/2 and solving (4) for  An initial autonomous quasi-periodic regime will now be
its phase and amplitude. At thietype bifurcation points, the considered. The two fundamentals will kg, and the circuit
probe amplitude takes a zero value, which can be explain@gtonomous frequency,. Possible bifurcations from this

Autonomous Quasi-Periodic Regime
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regime will be turning points and the appearance or disapeyond the Hopf bifurcation [10], [11] and is thus responsible
pearance of a second autonomous fundamental. In additiorfdo the transformation from autonomous quasi-periodic to
that, the vanishing of autonomous quasi-periodic paths mpgriodic regime through a jump phenomenon. As has been
be due to two different phenomena: synchronization of tteown in [12], coexistence of synchronized/divided and quasi-
two fundamental frequencies and extinction of the autonomopeeriodic paths is even possible in these cases.
frequencyw, by an inverse Hopf bifurcation. Each of these 3) Hopf Bifurcation: Appearance of a Second Autonomous
phenomena will be treated in the following subsections. Fundamental: The appearance of a second autonomous fun-
1) Synchronization:Starting from an autonomous guasidamental may be detected through harmonic balance by in-
periodic regime, as the parameter is modified, the autonomdtaucing a second probe into the circuit. The system to be
frequency is modified too. Synchronization takes place whenlved will then be
the two fundamentals;,, andw, become commensurable for

1 1 2 -y
a certain parameter range. In order to detect the approaching S(A, Wy Wy 1) =0

p

of a synchronization parameter value, the rotation number S(AL, wh, w2, ) =0
is going to be introduced [6]. This humber is defined as the A2 —¢ (18)
ratio between the two independent fundamentals b
Ly wa(m) where AIQ) and wg are the second probe amplitude and fre-
) == quency.
At the synchronization points; becomes rational, remaining As a final comparison between the traditional approach for
constant for a certain parameter set. the bifurcation point calculation, based on (9) and the new

The transformation suffered by the quasi-periodic pattobe method, it may be said that the former is less computer

at the synchronization points depends on the value that #ifge consuming, but more demanding from a programming
rotation number reaches at these points_ point of view. In addition to that, it is often less accurate

i) = 1: The autonomous component vanishes and the é/%hen applied for obtaining the bifurcation loci. This is due
ternal one becomes the fundamental of the new periodft e difficulties in choosing, when two parameters vary,
regime. This is the case of an injected oscillator. At th proper threshold value for the zeros of the characteristic

synchronization points, the probe amplitudg takes a gtermmant in th.e numerlcal resolutlo.n. .In order to cIa.rlfy
zero value this point, the simulation of two periodic paths showing

i) r = m/n # 1 (with m and n integers): The probe turning points has been carried out [see Fig. 3(a)]. According
value approaches that of the - (win/n) frequency to Section 11I-B.2, the HB characteristic determinant as well
component in the new periodic regimué Foe 1/n, the as the probe determinant should take a zero value at these

autonomous component from the quasi-periodic reginﬁ’é’ims' The variations of the HB determinant along two paths,
becomes the system fundamental corresponding to 0 and 6 dBm input power, respectively, are

. . . _shown in Fig. 3(c) and (d). As can be seen, the bifurcation
The rational ratio between the fundamental frequencies Ldiction is accurate. However. the resolution of @) for

the_syr_lchronization points_lea(_js toa dgg_eneration of the qu 8k two parametersiput power, input frequencgin order to
perlodlc HB system, mak!ng 't_ very Q|ﬁ|cult to .det'ect tr,'es‘?)btain the turning point locus) would be very difficult due
points from a quasi-periodic point of view. In periodic regime, ihe big change in the determinant magnitude as the input
the synchronization of fundamentals is given by a turning poi Lwer is modified (from order 8 to 10 in this example).

of the solution path [], [6] (which is not true for the inversérpq same big variations have been found for other two-
Hopf bifurcations). The synchronization points may thus B&, . meter analysis. As can be seen in Fig. 3(b), the variation
obtained from the same condition (15). However, it will bey e of the probe determinant is similar in both cases. The
necessary to distinguish these synchronization points from TQ@curacy problems of the HB determinant are even more
periodic_path “4”’“”9 poir_nts as_sociated tq hy;teresis _andjumgérious in quasi-periodic regime, due to the high dimension
A technique will be provided in the application section. ¢ the characteristic matrix. In the probe method, the system
_ 2) H_ysteress:Thg guasi-periodic pz?\ths can also show turng e analyzed is always a 2 2 system, whatever the
ing points, responsible for hysteresis or jump phenomeng,mper of frequency components taken into account, which
From the probe point of view, they will correspond to zergreaty reduces the resolution difficulties. For the branching
values of its associated determinant [see (8)]. The quagkint bifurcations, the threshold value to be imposed always
periodic turning points are thus obtained from the system ¢ regponds to a voltage or current variable, which makes the

S, (Ap, wp, 1) =0 threshold assignation much simpler than for the determinant
Si(A,, wp, 1) =0 of a high-order matrix.
det[S(Apv Wp, ﬁ] =0 (17)

with w, = w,. The determination of the turning points in IV. APPLICATIONS

the quasi-periodic paths is extremely important for a good i ) _ i

characterization of the circuit behavior. Actually, when th&: Cubic Nonlinearity Oscillator

guasi-periodic path vanishing is due to an inverse Hopf bi- The stability analysis method proposed here has been ap-
furcation, a turning point often occurs for parameter valugdied to the cubic nonlinearity oscillator of Fig. 4. This circuit
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Fig. 3. Turning point detection in MMIC frequency divider. (a) Constant input power paths. (b) Probe determinant. (c)—(d) HB characteristimdetermi
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Fig. 4. Cubic nonlinearity oscillator. =} of N Periodic region C p 4
S > N
2 < Hopf / ngsnpenodlc
may exhibit two main modes of operation: phase—locked% 0 — Inverse Hopf ) fegm? =
. . . . . . . His T. =35
oscillator and self-oscillating mixer. Its bifurcation loci on the & S \i“ e oo B B
usual parameter plane, given by the input generator amplitudé ggﬁ;mdw o Tuming poin:
. . . . 20 -
and frequency, are shown in Fig. 5. As already indicated, thgg 20 = =™ T T
. . . . o]
free-running oscillation always belongs to one of the possible” N Synchronization  Ig=7mA
turning point loci in the periodic regime. In Fig. 5, this point 0 'S,
1.0 1.2 14 1.8 2.0

is given by O and the corresponding locus byOCD. This

turning-point locus may contain both synchronization and INPUT FREQUENCY (MHz)
jump points. Its two common points with the Hopf bifurcation_,
locus (at which the latter originates) are solutions of (15) for?
a zero value of the probe amplitude and, in this example,
are given byA and D. These points will provide a goodthe microwave literature, these are bifurcations of global type,
estimate for the border between synchronization and junrp/olving a special global configuration of invariant manifolds
behavior. Actually, forl, < I, andl, < Ip the turning-point [5]. Although its study is beyond the scope of this paper, some
curve must correspond to synchronization, as the Hopf locpeeliminary detections have been carried out by analyzing the
is never traversed. For more accuracy, the possible existenoalescence of the quasi-periodic solutions and the unstable
of “saddle connections” [5] near the intersection points shou{daddle) periodic paths. To our calculation accuracy, the saddle
be considered. Unlike other bifurcations commonly treated @onnection curve remains close to the constant Ijne- 1.

5. Bifurcation loci for the cubic nonlinearity oscillator.
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Fig. 6. Bifurcation diagrams as a function of input frequency for the cubic nonlinearity oscillator. (a) For input generator aniplittdg mA. (b)
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In Fig. 6, several bifurcation diagrams as a function of 1.4
input frequency for different input current amplitudes, have
been traced, including both periodic and quasi-periodic paths.
Since in quasi-periodic regime there are two fundament
frequencies, a solution path is traced for each of them. Th& |
synchronization, hysteresis, and Hopf loci have been su§
perimposed. Periodic paths will be unstable inside turning®
point locus and below the Hopf locus. Fd, = 7 mA
[see Fig. 6(a)], the periodic path intersects at both ehds (
and 2S;) of the synchronization locus. Then the start of the
quasi-periodic regime will be due on both sides to a loss
of synchronization. Forl, = 20 mA [see Fig. 6(b)], the
appearance of the quasi-periodic regime at the left side is
due to a Hopf bifurcation H5,). On the right side, there 0% 1.2 1.4 1.6 1.8 2.0
is a loss of synchronizationS¢,) from which the periodic INPUT FREQUENCY (MHz)
path becomes unstable. F@' = 35 MA [See. Flg: 6(.C)]’ the Fig. 7. Rotation number versus input frequency for input generator ampli-
appearance, on the left side of the quasi-periodic respoRgfss, = 7 mA and, = 35 mA.
is due a Hopf bifurcation(* Hz;). The right part cuts twice
the hysteresis locu¢'73; and 273;), which will give rise
to an actual hysteresis phenomenon. Then, the Hopf locus iShe evolution of the rotation number as a function of
traversed? Hs5), with appearance of the quasi-periodic pathsnput frequency forl, = 7 mA and I, = 35 mA is shown

ROTATION
S
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Fig. 8. Schematic of the MMIC frequency divider by two with input frequency 28 GHz.
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Fig. 9. Bifurcation loci of the MMIC frequency divider by two. (a) General view. (b) Expanded view.

in Fig. 7. ForI, = 7 mA, the rotation number reaches thdéwo different phenomenal-type bifurcation from a periodic
unity value at the start points of periodic operation, which iegime, and second harmonic synchronization from a quasi-
characteristic of the synchronization phenomenon.JEet 35 periodic one (below the Hopf locus).
mA, the transformation into periodic regime is due (at each As in this example, there may, in general, be one or
end) to an inverse Hopf bifurcation. The value of the numbefiore turning-point curves in periodic regime, located above
7 is nonrational at these points and far from unity. or below the Hopf andl-type locus. The synchronization
phenomenon will be associated to the turning-point curve con-
taining the free-running oscillation (main turning-point locus).
B. MMMIC Frequency Divider in Millimetric Band In Fig. 9(a), the small island on the left is a closed turning-

The schematic of a MMIC frequency divider by two [13]Point curve associated to jump and hysteresis phenomena in
with central input frequency 28 GHz is shown in Fig. 8. Ahe divided paths. From this representation, it is not possible
broad-band configuration [13] with two transistor stages h&® predict the system state (synchronized or not) when the
been used for the design. For a self-bias voltage of 3.5 Wrning-point island is traversed, but this will be solved later.
the resulting bifurcation loci as a function of input powein Fig. 9(b), there is a zoom of the left side of the loci in
and frequency are shown in Fig. 9(a). Three main operatighich the common poin between the main turning-point
modes are to be noted: multiplier, self-oscillating mixer, arldcus and the Hopf locus may be observed. The locus provided
frequency divider. The frequency division may be due toy BCD is an hysteresis locus.
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10 and quasi-periodic paths. A simple mathematical condition has
also been obtained for each of the most important bifurca-
tion types. The new technique, easily implementable on the
computer, allows an accurate determination of the bifurcation
loci, both from periodic and quasi-periodic regimes. The new
method has been validated by comparing the results from these
bifurcation loci with bifurcation diagrams obtained through the
traditional approach. The synchronization phenomenon is also
o analyzed in detail.

xperimental A A
------- * Ext. Multiplier) All of the above techniques have been successfully applied
— - - Ext. (Quasiperiodic) . . . .
Ext. (Divider) to a cubic nonlinearity oscillator and a MMIC frequency
T T Quasperiode) divider with 28-GHz input frequency. The divider has been
'7-(]10 "3 5 3 10 experimentally characterized, obtaining an excellent agreement

INPUT POWER (dBm) with the simulation results.

.10 o

OUTPUT POWER (dBm)
w2

Fig. 10. Frequency-divider bifurcation diagram as a function of input power

for input frequencyF;, = 27.35 GHz. APPENDIX

In this appendix, it will be shown how the general bifurca-

In Fig. 10, the bifurcation diagram as a function of inpu'ijon (9) may be derived from the probe bifurcation conditions
power for constant input frequency 27.35 GHz has be ich validates the proposed technique. Since the condition
traced. Synchronization takes place at pafhtBelow this or turning pointhas already been discussed in this paper, only

point, the periodic paths (divider and multiplier) corresponge Hopf b|fL.1rcat|o.ns (bc_)th from dg and periodic regimes) and
to unstable solutions that will not be physically observabl 1e I-type bifurcation will be considered.

The hysteresis phenomenon betwégnand 7 is due to the
turning-point island and will be observable since it takes pla
in the stable synchronized section (aba¥e By tracing the  Let us suppose that for a parameter vajuethe probe
quasi-periodic paths, it has been possible to distinguish thenperturbation condition is satisfied for an incremental probe
synchronization point from the other two turning points immplitude A, = ¢ and autonomous frequency, = w, as

the periodic path. This may be difficult when only periodi¢ollows:

simulations are avaiIapIe. Here, we propose to trace thelloci S(fi, wa) =0 with 4, = e. (A1)
also on the planes defined by each parameter and a meaningful

circuit variable, such as its output power. By superimposing Due to the probe equations continuity, the parameterust

the bifurcation diagram to be analyzed, the uncertainty abdlong to a neighborhood of the parameter valyg which

the order of occurrence of the different phenomena will b& solution of (A.1) for A, = 0. Through the HB equations,
eliminated. Here, a loci representation has been carried #@ X vector corresponding to the probe valiée w,) will be

on the plgneRn—Pout, with f’out being the 'OL.Jtput power X = X(e, wa). (A.2)

at the divided frequency. This has been split into two parts: _ .

one including the loci points fowy, /2 < wp, With wy being And in the time domain

the free-running oscillation frequency, and the other including x = x[p(t)] (A.3)

the loci points forwi,/2 > wy. The former loci are shown ) ] ]

in Fig. 11. For the Hopf and-type loci, the output power With p(t) = ¢-cos(w,t). Since the probe valug(t) is small, it

at the divided frequency is equal to zero, so they both [l be possible to carry out a Taylor expansionxdft) about

on the horizontal axis. The region inside the main turning- = 0. Then

point locus is an unstable one. The intersection between the N ax .

periodic solution path and the turning-point island takes place X~ Xo+ ap o p(t) = x(t)o + Ax. (A-4)

@é Hopf-Type Bifurcations

) : . : : . I .nents asxy and the new fundamental frequency will then be
bifurcation dlagram_s mter;ectmg the |sla_nd. Thl_Js, itis p_osabéfae top(t). If xo is periodic of fundamental frequencys, the
to assure the physical existence of the island jump points. incremental termAx will have frequency components given
by kw;, +w,. The incremental vectaAx must satisfy the HB
perturbation system, obtained when the nonlinear equations
Some modifications of the probe method for the analysise linearized abouk, [4], and the resulting homogeneous
of autonomous and synchronized devices are presented heystem will also satisfy (9). This provides the Hopf bifurcation
allowing an easier application of this technique to any existirgpndition. This will be true as long as the probe amplitude
HB software. From the modified probe equations, a new coremains small enough for the Taylor expansion (A.4) to be
tinuation technique has been derived for tracing both periodialid, which of course, implieg ~ 5.

V. CONCLUSIONS
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Fig. 11. Bifurcation loci on the plane input power—output powerdgr < 2wq. The bifurcation diagram as a function of input power fgf, = 26.5 GHz
has been superimposed.
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