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Synchronization Analysis of Autonomous
Microwave Circuits Using New
Global-Stability Analysis Tools
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Abstract—A new spectral-balance technique for the global-
stability analysis of autonomous circuits is presented in this
paper. This technique relies on the introduction of measuring
probes into the circuit and it allows a simple determination of
both bifurcation diagrams and bifurcation loci as a function of
any suitable parameter. Through the proposed algorithms, this
kind of analysis can be easily added to any existing software,
since it is performed externally to the harmonic-balance (HB)
calculation. Due to its local nature, it also allows an easy selection
of the bifurcation parameters, which spreads the simulation
possibilities. Both periodic and quasi-periodic regime simulations
are possible, and bifurcations are detected in both operating
modes. The synchronization phenomenon in injected oscillators
and frequency dividers is also analyzed in detail for an accurate
prediction of the operating bands. The simulation techniques are
illustrated by means of their application to a cubic nonlinearity
oscillator. They are then used for the stability analysis of a
monolithic microwave integrated circuit (MMIC) divider by two
operating in the millimetric range. A very good agreement has
been obtained with the experimental results.

Index Terms—Bifurcation, continuation method, frequency di-
vider, stability, synchronization.

I. INTRODUCTION

T HE HARMONIC-BALANCE (HB) method allows an
efficient analysis of forced nonlinear regimes. However,

in the case of autonomous or synchronized regimes, it must
be complemented with special techniques in order to avoid
its convergence toward trivial solutions [1], [2]. One of the
most powerful is the measuring probes technique [2]. A
probe is an independent source operating at the autonomous
or synchronized fundamental with a filter, eliminating its
influence at all the other frequencies. The probe must also
satisfy a nonperturbation condition of the steady state, which
is provided by a simple mathematical equation. By means of
the probe, the circuit may be simulated as if it operated in
a forced regime, which allows a straightforward application
of the HB technique. In this paper, some modifications are
introduced in this technique to make it more easily applicable
to any existing HB software. In the new resolution method,
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it is taken into account that the HB independent variables are
related to the probe value through the HB equations. Thus,
with the aid of an existing HB approach, it is possible to
consider an absolute dependence of the probe nonperturbation
equation on the probe variables, such as amplitude, phase,
or frequency. One of these variables can always be fixed
in advance according to the regime to be simulated, so the
resulting system will be of order two, which greatly reduces
the complexity of the calculation.

When one or more parameters are considered, bifurcation
phenomena such as synchronization, hysteresis, or frequency
division must be accurately detected for a good prediction
of the circuit behavior. The solution paths are constituted by
the set of solutions of the HB equations that result from the
variation of a parameter. Here, they are obtained by intro-
ducing the parameter into the probe equations and applying
a continuation technique [3] to these equations instead of
the HB system. This makes it possible to implement this
analysis separately from the HB calculation. The method is
applicable both for periodic and quasi-periodic solution paths.
This allows a more accurate analysis of the transformations
from one regime to another, which often show hysteresis
phenomena. Although a probe formalism for bifurcations
had been established before [2], this was based on the root
calculation of the HB-system characteristic determinant [2],
[4], using the probe for modeling the injection generator
(substitution probe) [2]. Many technical aspects of the method
change when measuring (nonperturbing) probes are used.
Actually, considering the absolute dependence of the probe
on its own variables, important bifurcation phenomena can be
easily detected. These are mainly branching and turning points.

Branching: For a given parameter value, a solution branch
starts or ends. This is characteristic of Hopf bifurcations and
frequency division by two. When the branch is traced by means
of a probe, its beginning and end correspond to a zero value
of the probe amplitude. This allows a simple detection of the
branching points.

Turning Point: The turning points at which the solution
path shows an infinite or undetermined slope, indicating the
creation or annihilation of solution states [4]. The curves
corresponding to the probe variables (e.g., amplitude, phase, or
operating frequency) also exhibit turning points for the same
parameter values, as will be shown. The probe absolute system
allows a simple detection of these points, due to its reduced
2 2 dimension.
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Bifurcation loci (on a two-parameter plane) may thus be ob-
tained by imposing simple conditions to the measuring probe
introduced into the circuit. This avoids the more demanding
root calculation of the HB characteristic determinant [2], [4].

In the engineering literature, the termphase-lockedis of-
ten applied to any periodic state of an injected oscillator.
However, from an autonomous quasi-periodic regime with
two nonrationally related fundamentals, there are two different
phenomena leading to a periodic behavior as a parameter is
modified: the synchronization, when the two fundamentals
become rationally related, and the inverse Hopf bifurcation,
or asynchronous extinction of the autonomous frequency.
The former only takes place for a relatively narrow band,
around the free-running oscillation frequency, or one of its
harmonic components, and it is associated to turning points of
periodic bifurcation diagrams. From a geometrical viewpoint,
at the turning points (also called saddle-node bifurcations) of
a stable periodic regime, a stable node and a saddle of the
Poincare mapping collide in a single equilibrium point (saddle
node) and disappear for further parameter variation [5], [6].
Generally speaking, the system solution should then jump to
another stable solution, but if no one is encountered, stable
and unstable manifolds will give rise to a limit cycle of the
mapping [5], [6], i.e., to a quasi-periodic regime. This may be
understood as a loss of synchronization of the initial periodic
regime. Turning points may thus correspond either to jump
or phase-locking phenomena. Here, some hints are provided
in order to distinguish both types of turning points from the
bifurcation loci. The transformation of the quasi-periodic paths
into a synchronized periodic response is also studied in detail.

For an easy understanding of the proposed techniques,
these are going to be applied first to a cubic nonlinearity
oscillator. Then, a monolithic microwave integrated circuit
(MMIC) frequency divider by two in the millimetric range
will be analyzed. They will be used as examples in the analysis
of the synchronization phenomena and their behavior will be
compared from a bifurcation point of view.

II. STEADY-STATE ANALYSIS

In the HB formulation, the overall circuit (see Fig. 1) is
split into an embedding linear circuit, independent generators

, and nonlinear sources controlled by the independent
variables . The HB system is then obtained by equating
all the spectral components of the Fourier transforms of,

, and , and can be written as [7]

(1)

where , , and are vectors, respectively, containing the
spectral components of , , and . The matrices are
obtained from the analysis of the linear part of the circuit.
The frequency components will be given by with

.
The application of HB is straightforward in the case of

forced regimes, but in case of autonomous or synchronized
operation there might be some problems of convergence
toward trivial solutions. When a measuring probe [2] at the
autonomous or synchronized frequency is introduced into the

Fig. 1. HB partitioning.

(a)

(b)

Fig. 2. Probes configuration. (a) Voltage probe. (b) Current probe.

circuit, as shown in Fig. 2, the analysis may be performed as
in the forced regime, taking advantage of the efficiency of HB
in forced operation. For the resulting solution to be valid, the
probe must satisfy a nonperturbation condition of the steady
state [2]. According to the type of probe (voltage or current
source), this condition will be given by

for a voltage probe

for a current probe (2)

where and are, respectively, the probe voltage and
current.

The probe is characterized by its amplitude, operating
frequency , and phase . However, depending on the
type of regime to be analyzed, one of them can always be
fixed in advance [2]. Hereafter, the two probe variables to
be determined will be called and . These variables will
be and for autonomous regimes and and for
synchronized regimes [2]. The total system will then be

(3a)

(3b)

where are the spectral-balance equations andis the
vector composed of the real and imaginary parts of the ratio
(2).

The system (3) can be solved considering a partial de-
pendence of the probe and HB equations on the nonlinearity
controlling variables and the probe variables and [2].
However, including the probe in the generator vector, the
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vector corresponding to every value, with
can be obtained through the HB approach, as stated in (1).
An absolute dependence of the probe equations on the probe
vector may then be considered as follows:

(4)

The solving strategy adopted here is thus based on a two-tier
process where the pure HB equation constitutes the inner loop.
In this way, a system of only two unknowns in two equations
is obtained. Although more demanding in terms of computer
time, this method has the advantage of being easily applicable
to existing software since it can be implemented separately
from the HB calculation.

III. GLOBAL-STABILITY ANALYSIS

A. Probe-Continuation Method

For obtaining the evolution of the circuit steady solution
when one of its parameters is continuously modified, this
parameter should be introduced into the probe equations

(5)

where the subindexes indicate real and imaginary parts. This is
a system of three unknowns in two equations that provides the
solution path. In general, this curve will be multivalued and
this is why a continuation method must be used. The Jacobian
matrix of the probe equations is introduced first:

(6)

Once a solution has been determined for the param-
eter value , the prediction for the next point of the path

corresponding to may be obtained by
linearizing the probe equations about as follows:

(7)

After a possible parameters exchange, the correction of the pre-
dicted value is performed by means of the Newton–Raphson
algorithm. From (7), the infinite slope or turning points of the
solution curve as a function of the continuation parameter
will satisfy

(8)

Thus, they will correspond to a zero value of the determinant
of the Jacobian matrix, as given by (6).

This continuation method is easily implementable on the
computer since no modifications of the HB formulation are
needed. Actually, the selection of a new parameter only
involves modifications in the few subroutines dealing with
the derivatives calculation of the function. This method

is especially suitable for obtaining the solution paths in au-
tonomous operating modes such as those corresponding to
tuned oscillators or to the autonomous quasi-periodic solutions
of injected oscillators. Actually, for obtaining these paths from
a traditional continuation approach applied to the HB system
(aside from the HB Jacobian matrix), two sets of derivatives of
the HB functions will be needed: with respect to the parameter

and the autonomous frequency, which varies along the
path. By applying (7), no derivatives of the HB functions with
respect to or are calculated.

B. Stability Analysis

For determining the stability of a given solution point
, a perturbation of the form will be considered

[4]. Due to its small value, the new solution point may be
expressed as with the perturbation vector
having frequency components given by . This
perturbation vector must also satisfy the HB equations, and
since there are no generators at the perturbation frequencies,
an homogeneous system (also calledcharacteristic system)
will result. For solutions different from zero to exist,
the system determinant must be equal to zero. The steady
solution will be stable when all the determinant roots have

and bifurcations (or qualitative stability changes) will
be obtained for the parameter values satisfying [4]

(9)

where is the characteristic matrix.
Equation (9) provides the general condition for local type

bifurcations, i.e., involving a single point [5]. The vector
is the steady-state solution with any number of fundamentals
corresponding to the parameter value. Different sorts of
bifurcations are possible depending on the initial regime and
the frequency value satisfying (9). The new method is
based on the properties of the probe amplitude or associated
determinant at the bifurcation points. In the Appendix, a
discussion is presented about the equivalence between the
bifurcation conditions obtained from the new method and the
general equation (9). Three different regimes will be consid-
ered: autonomous periodic, periodic with external excitation,
and autonomous quasi-periodic.

A. Autonomous Periodic

1) Primary Hopf Bifurcation: Start of a Free-Running Os-
cillation: When applying (9) to a dc regime of a potentially
autonomous circuit, the corresponding solutions provide the
primary Hopf bifurcation points, at which RF solutions with

as fundamental frequency appear or disappear.
When introducing a probe into the circuit, the primary Hopf

bifurcation points are given by the solutions of the probe
absolute system for a zero value of the probe amplitude, as this
is the limit condition for the existence of an autonomous solu-
tion. Actually, in an autonomous solution path, a probe value
may be assigned to each steady oscillation, while as soon as
this autonomous solution is extinguished, the nonperturbation
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condition (4) cannot be satisfied for any probe amplitude or
frequency. Due to the continuity of the probe equations, the
probe amplitude will tend to a zero value as the inverse Hopf
bifurcation point is approached.

The practical resolution for primary Hopf bifurcation points
may be carried out by imposing the probe a threshold ampli-
tude value . The equation system to be solved will be

(10)

where the probe frequency is of course equal to the
unknown autonomous frequency . The vector may be
composed of one or two parameters. In case of two elements

, a bifurcation locus will be obtained on the plane
. Possible parameters are bias voltages or tuning

elements. The application of a Nyquist analysis [4] provides a
good initial estimate of for a given parameter value and (10)
is easily solved through the Newton–Raphson method. This
must be complemented with a continuation technique when a
locus is to be obtained.

2) Turning Points: When tracing an oscillator solution path
as a function of a tuning parameter, turning points giving
rise to jump or hysteresis phenomena are often encountered.
According to (8), these points will satisfy

(11)

Due to the absolute dependence of the-function on the probe
variables, the above determinant agrees with the Kurokawa
stability function [8] for free-running oscillators. Here, the
multiharmonic nature of the circuit solution is taken into
account in the derivatives calculation (through HB). The
turning points can thus be calculated by applying

where . Either a single bifurcation point or a locus
may be obtained according to the dimension of.

B. Periodic Regime With External Excitation

From a periodic regime of fundamental provided by the
external generator, different sorts of bifurcations are possible.

1) Indirect or I-Type Bifurcation: Frequency Division by
Two: -type bifurcations are solutions of (9) for .
At these points, a divided-by-two solution appears or disap-
pears [9]. By means of a probe, such solutions are obtained
by fixing the probe frequency to and solving (4) for
its phase and amplitude. At the-type bifurcation points, the
probe amplitude takes a zero value, which can be explained

in a similar fashion to the autonomous case. The practical
resolution is carried out from the following system:

(13)

For two elements in the vector, the -type bifurcation locus
is obtained.

2) Secondary Hopf Bifurcation: Appearance of an Au-
tonomous Frequency:The secondary Hopf bifurcations are
solutions of (9) for with and nonrational. At
these points, a quasi-periodic solution of fundamentalsand

[9] will appear or disappear as the parameter is modified.
The latter case will correspond to an inverse Hopf bifurcation.
By means of a probe, the Hopf bifurcation points may be
obtained by setting the probe amplitude to a threshold value

and solving for the parameter value and the autonomous
frequency

(14)

where the probe frequency is equal to . Due to the
threshold amplitude value of the autonomous fundamental, the
number of spectral components for the resolution of (14) may
be greatly reduced.

3) Turning Points: At turning points, the path stability
changes without any variation in the system fundamentals.
Thus, they are solutions of (9) for . Using the probe
method, the probe phase and amplitude will be the variables
to be solved. Taking (8) into account, turning points may be
calculated by applying

(15)

Either a single bifurcation point or locus may be obtained
according to the dimension of.

Turning points are associated to jump and hysteresis phe-
nomena. However, as already discussed, they may also de-
termine the end of phase-locked behavior. When tracing the
loci of an injected oscillator on the traditional plane, given
by the input powerand theinput frequency, the free-running
oscillation point will always belong to one of the possible
turning point loci (as it is a degenerated point, obtained for
zero input power). The synchronization phenomenon will be
treated in greater detail in Section III-B.3 and the application
section.

C. Autonomous Quasi-Periodic Regime

An initial autonomous quasi-periodic regime will now be
considered. The two fundamentals will be and the circuit
autonomous frequency . Possible bifurcations from this
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regime will be turning points and the appearance or disap-
pearance of a second autonomous fundamental. In addition to
that, the vanishing of autonomous quasi-periodic paths may
be due to two different phenomena: synchronization of the
two fundamental frequencies and extinction of the autonomous
frequency by an inverse Hopf bifurcation. Each of these
phenomena will be treated in the following subsections.

1) Synchronization:Starting from an autonomous quasi-
periodic regime, as the parameter is modified, the autonomous
frequency is modified too. Synchronization takes place when
the two fundamentals and become commensurable for
a certain parameter range. In order to detect the approaching
of a synchronization parameter value, the rotation number
is going to be introduced [6]. This number is defined as the
ratio between the two independent fundamentals

At the synchronization points, becomes rational, remaining
constant for a certain parameter set.

The transformation suffered by the quasi-periodic paths
at the synchronization points depends on the value that the
rotation number reaches at these points.

i) : The autonomous component vanishes and the ex-
ternal one becomes the fundamental of the new periodic
regime. This is the case of an injected oscillator. At the
synchronization points, the probe amplitude takes a
zero value.

ii) (with and integers): The probe
value approaches that of the frequency
component in the new periodic regime. For , the
autonomous component from the quasi-periodic regime
becomes the system fundamental.

The rational ratio between the fundamental frequencies at
the synchronization points leads to a degeneration of the quasi-
periodic HB system, making it very difficult to detect these
points from a quasi-periodic point of view. In periodic regime,
the synchronization of fundamentals is given by a turning point
of the solution path [5], [6] (which is not true for the inverse
Hopf bifurcations). The synchronization points may thus be
obtained from the same condition (15). However, it will be
necessary to distinguish these synchronization points from the
periodic path turning points associated to hysteresis and jumps.
A technique will be provided in the application section.

2) Hysteresis:The quasi-periodic paths can also show turn-
ing points, responsible for hysteresis or jump phenomena.
From the probe point of view, they will correspond to zero
values of its associated determinant [see (8)]. The quasi-
periodic turning points are thus obtained from the system

(17)

with . The determination of the turning points in
the quasi-periodic paths is extremely important for a good
characterization of the circuit behavior. Actually, when the
quasi-periodic path vanishing is due to an inverse Hopf bi-
furcation, a turning point often occurs for parameter values

beyond the Hopf bifurcation [10], [11] and is thus responsible
for the transformation from autonomous quasi-periodic to
periodic regime through a jump phenomenon. As has been
shown in [12], coexistence of synchronized/divided and quasi-
periodic paths is even possible in these cases.

3) Hopf Bifurcation: Appearance of a Second Autonomous
Fundamental: The appearance of a second autonomous fun-
damental may be detected through harmonic balance by in-
troducing a second probe into the circuit. The system to be
solved will then be

(18)

where and are the second probe amplitude and fre-
quency.

As a final comparison between the traditional approach for
the bifurcation point calculation, based on (9) and the new
probe method, it may be said that the former is less computer
time consuming, but more demanding from a programming
point of view. In addition to that, it is often less accurate
when applied for obtaining the bifurcation loci. This is due
to the difficulties in choosing, when two parameters vary,
a proper threshold value for the zeros of the characteristic
determinant in the numerical resolution. In order to clarify
this point, the simulation of two periodic paths showing
turning points has been carried out [see Fig. 3(a)]. According
to Section III-B.2, the HB characteristic determinant as well
as the probe determinant should take a zero value at these
points. The variations of the HB determinant along two paths,
corresponding to 0 and 6 dBm input power, respectively, are
shown in Fig. 3(c) and (d). As can be seen, the bifurcation
prediction is accurate. However, the resolution of (9) for
the two parametersinput power, input frequency(in order to
obtain the turning point locus) would be very difficult due
to the big change in the determinant magnitude as the input
power is modified (from order 10 to 10 in this example).
The same big variations have been found for other two-
parameter analysis. As can be seen in Fig. 3(b), the variation
range of the probe determinant is similar in both cases. The
accuracy problems of the HB determinant are even more
serious in quasi-periodic regime, due to the high dimension
of the characteristic matrix. In the probe method, the system
to be analyzed is always a 2 2 system, whatever the
number of frequency components taken into account, which
greatly reduces the resolution difficulties. For the branching
point bifurcations, the threshold value to be imposed always
corresponds to a voltage or current variable, which makes the
threshold assignation much simpler than for the determinant
of a high-order matrix.

IV. A PPLICATIONS

A. Cubic Nonlinearity Oscillator

The stability analysis method proposed here has been ap-
plied to the cubic nonlinearity oscillator of Fig. 4. This circuit
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(a) (b)

(c) (d)

Fig. 3. Turning point detection in MMIC frequency divider. (a) Constant input power paths. (b) Probe determinant. (c)–(d) HB characteristic determinant.

Fig. 4. Cubic nonlinearity oscillator.

may exhibit two main modes of operation: phase-locked
oscillator and self-oscillating mixer. Its bifurcation loci on the
usual parameter plane, given by the input generator amplitude
and frequency, are shown in Fig. 5. As already indicated, the
free-running oscillation always belongs to one of the possible
turning point loci in the periodic regime. In Fig. 5, this point
is given by and the corresponding locus by . This
turning-point locus may contain both synchronization and
jump points. Its two common points with the Hopf bifurcation
locus (at which the latter originates) are solutions of (15) for
a zero value of the probe amplitude and, in this example,
are given by and . These points will provide a good
estimate for the border between synchronization and jump
behavior. Actually, for and the turning-point
curve must correspond to synchronization, as the Hopf locus
is never traversed. For more accuracy, the possible existence
of “saddle connections” [5] near the intersection points should
be considered. Unlike other bifurcations commonly treated in

Fig. 5. Bifurcation loci for the cubic nonlinearity oscillator.

the microwave literature, these are bifurcations of global type,
involving a special global configuration of invariant manifolds
[5]. Although its study is beyond the scope of this paper, some
preliminary detections have been carried out by analyzing the
coalescence of the quasi-periodic solutions and the unstable
(saddle) periodic paths. To our calculation accuracy, the saddle
connection curve remains close to the constant line .
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(a) (b)

(c)

Fig. 6. Bifurcation diagrams as a function of input frequency for the cubic nonlinearity oscillator. (a) For input generator amplitudeIg = 7 mA. (b)
For Ig = 20 mA. (c) For Ig = 35mA.

In Fig. 6, several bifurcation diagrams as a function of
input frequency for different input current amplitudes, have
been traced, including both periodic and quasi-periodic paths.
Since in quasi-periodic regime there are two fundamental
frequencies, a solution path is traced for each of them. The
synchronization, hysteresis, and Hopf loci have been su-
perimposed. Periodic paths will be unstable inside turning
point locus and below the Hopf locus. For mA
[see Fig. 6(a)], the periodic path intersects at both ends (
and ) of the synchronization locus. Then the start of the
quasi-periodic regime will be due on both sides to a loss
of synchronization. For mA [see Fig. 6(b)], the
appearance of the quasi-periodic regime at the left side is
due to a Hopf bifurcation ( ). On the right side, there
is a loss of synchronization ( ) from which the periodic
path becomes unstable. For mA [see Fig. 6(c)], the
appearance, on the left side of the quasi-periodic response
is due a Hopf bifurcation . The right part cuts twice
the hysteresis locus and , which will give rise
to an actual hysteresis phenomenon. Then, the Hopf locus is
traversed , with appearance of the quasi-periodic paths.

Fig. 7. Rotation number versus input frequency for input generator ampli-
tudesIg = 7 mA and Ig = 35 mA.

The evolution of the rotation number as a function of
input frequency for mA and mA is shown
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Fig. 8. Schematic of the MMIC frequency divider by two with input frequency 28 GHz.

(a) (b)

Fig. 9. Bifurcation loci of the MMIC frequency divider by two. (a) General view. (b) Expanded view.

in Fig. 7. For mA, the rotation number reaches the
unity value at the start points of periodic operation, which is
characteristic of the synchronization phenomenon. For
mA, the transformation into periodic regime is due (at each
end) to an inverse Hopf bifurcation. The value of the number

is nonrational at these points and far from unity.

B. MMMIC Frequency Divider in Millimetric Band

The schematic of a MMIC frequency divider by two [13]
with central input frequency 28 GHz is shown in Fig. 8. A
broad-band configuration [13] with two transistor stages has
been used for the design. For a self-bias voltage of 3.5 V,
the resulting bifurcation loci as a function of input power
and frequency are shown in Fig. 9(a). Three main operation
modes are to be noted: multiplier, self-oscillating mixer, and
frequency divider. The frequency division may be due to

two different phenomena:-type bifurcation from a periodic
regime, and second harmonic synchronization from a quasi-
periodic one (below the Hopf locus).

As in this example, there may, in general, be one or
more turning-point curves in periodic regime, located above
or below the Hopf and -type locus. The synchronization
phenomenon will be associated to the turning-point curve con-
taining the free-running oscillation (main turning-point locus).
In Fig. 9(a), the small island on the left is a closed turning-
point curve associated to jump and hysteresis phenomena in
the divided paths. From this representation, it is not possible
to predict the system state (synchronized or not) when the
turning-point island is traversed, but this will be solved later.
In Fig. 9(b), there is a zoom of the left side of the loci in
which the common point between the main turning-point
locus and the Hopf locus may be observed. The locus provided
by is an hysteresis locus.
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Fig. 10. Frequency-divider bifurcation diagram as a function of input power
for input frequencyFin = 27:35 GHz.

In Fig. 10, the bifurcation diagram as a function of input
power for constant input frequency 27.35 GHz has been
traced. Synchronization takes place at point. Below this
point, the periodic paths (divider and multiplier) correspond
to unstable solutions that will not be physically observable.
The hysteresis phenomenon betweenand is due to the
turning-point island and will be observable since it takes place
in the stable synchronized section (above). By tracing the
quasi-periodic paths, it has been possible to distinguish the
synchronization point from the other two turning points in
the periodic path. This may be difficult when only periodic
simulations are available. Here, we propose to trace the loci
also on the planes defined by each parameter and a meaningful
circuit variable, such as its output power. By superimposing
the bifurcation diagram to be analyzed, the uncertainty about
the order of occurrence of the different phenomena will be
eliminated. Here, a loci representation has been carried out
on the plane – , with being the output power
at the divided frequency. This has been split into two parts:
one including the loci points for , with being
the free-running oscillation frequency, and the other including
the loci points for . The former loci are shown
in Fig. 11. For the Hopf and -type loci, the output power
at the divided frequency is equal to zero, so they both lie
on the horizontal axis. The region inside the main turning-
point locus is an unstable one. The intersection between the
periodic solution path and the turning-point island takes place
in the stable synchronized section, thus these intersection
points will bring along an observable hysteresis phenomenon.
Since there are no intersection points between the turning-
point loci, this behavior pattern will be followed by all the
bifurcation diagrams intersecting the island. Thus, it is possible
to assure the physical existence of the island jump points.

V. CONCLUSIONS

Some modifications of the probe method for the analysis
of autonomous and synchronized devices are presented here,
allowing an easier application of this technique to any existing
HB software. From the modified probe equations, a new con-
tinuation technique has been derived for tracing both periodic

and quasi-periodic paths. A simple mathematical condition has
also been obtained for each of the most important bifurca-
tion types. The new technique, easily implementable on the
computer, allows an accurate determination of the bifurcation
loci, both from periodic and quasi-periodic regimes. The new
method has been validated by comparing the results from these
bifurcation loci with bifurcation diagrams obtained through the
traditional approach. The synchronization phenomenon is also
analyzed in detail.

All of the above techniques have been successfully applied
to a cubic nonlinearity oscillator and a MMIC frequency
divider with 28-GHz input frequency. The divider has been
experimentally characterized, obtaining an excellent agreement
with the simulation results.

APPENDIX

In this appendix, it will be shown how the general bifurca-
tion (9) may be derived from the probe bifurcation conditions
which validates the proposed technique. Since the condition
for turning pointhas already been discussed in this paper, only
the Hopf bifurcations (both from dc and periodic regimes) and
the -type bifurcation will be considered.

A. Hopf-Type Bifurcations

Let us suppose that for a parameter valuethe probe
nonperturbation condition is satisfied for an incremental probe
amplitude and autonomous frequency as
follows:

with (A.1)

Due to the probe equations continuity, the parametermust
belong to a neighborhood of the parameter value, which
is solution of (A.1) for . Through the HB equations,
the vector corresponding to the probe value will be

(A.2)

And in the time domain

(A.3)

with . Since the probe value is small, it
will be possible to carry out a Taylor expansion of about

. Then

(A.4)

The vector is the circuit solution for , which will
be either constant or periodic. The derivatives in the
incremental term will have the same frequency compo-
nents as and the new fundamental frequency will then be
due to . If is periodic of fundamental frequency , the
incremental term will have frequency components given
by . The incremental vector must satisfy the HB
perturbation system, obtained when the nonlinear equations
are linearized about [4], and the resulting homogeneous
system will also satisfy (9). This provides the Hopf bifurcation
condition. This will be true as long as the probe amplitude
remains small enough for the Taylor expansion (A.4) to be
valid, which of course, implies .
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Fig. 11. Bifurcation loci on the plane input power–output power for!in � 2!0. The bifurcation diagram as a function of input power forFin = 26:5 GHz
has been superimposed.

B. I-Type Bifurcations

In case of an -type bifurcation, the probe nonperturbation
equations will provide a solution

with and (A.5)

And in this case, the probe value will be

(A.6)

Due to the small probe value, it will be possible to carry out
a Taylor expansion of about , in a similar way
to (A.4). The new fundamental frequency will be now the
input generator frequency divided by two. Sinceis an HB
solution, the corresponding incremental vector must satisfy the
HB perturbation equations and the-type bifurcation condition
[derived from (9)] is directly obtained.
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